Strom aus Enns, Mur und Teigitsch. Die Wasserkraftwerke in der Steiermark.

WASSERKRAFTWERKE IN DER STEIERMARK

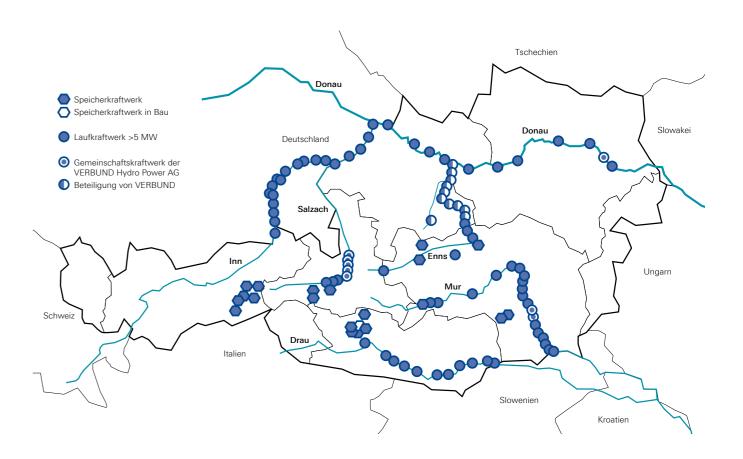
Inhalt

Wasserkraft bei VERBUND	
Wasserkraftwerke in der Steiermark	
Kraftwerke im Ennstal	
Kraftwerk Sölk	
Kraftwerk Salza	1
Kraftwerk Hieflau	1
Kraftwerke in der Weststeiermark	1
Teigitsch-Kraftwerke	1
Murkraftwerke westlich von Bruck	1
Kraftwerk Bodendorf	1
Kraftwerk Leoben	2
Weitere Kraftwerke westlich von Bruck	2
Murkraftwerke südlich von Bruck	2
Kraftwerk Pernegg	2
Weitere Kraftwerke südlich von Bruck	3
Murkraftwerke südlich von Graz	3
Kraftwerk Gabersdorf	3
Weitere Kraftwerke südlich von Graz	3

Wasserkraft bei VERBUND

VERBUND ist Österreichs führendes Elektrizitätsunternehmen und einer der großen Stromerzeuger aus Wasserkraft in Europa. Insgesamt betreibt VERBUND derzeit in Österreich und Bayern 127 Wasserkraftwerke mit einer Gesamtleistung von rund 7.650 Megawatt und produziert jährlich rund 28,2 Mrd. Kilowattstunden erneuerbaren Strom.

VERBUND betreut mehr als 1 Mio. Stromkunden in Europa, handelt in 15 Ländern mit Strom und beschäftigt rund 3.000 Mitarbeiterinnen und Mitarbeiter. Auf allen Wertschöpfungsstufen des Stroms – Erzeugung, Übertragung, Handel und Vertrieb – erbringt VERBUND in Österreich und Europa ökonomische und ökologische Spitzenleistungen. Seit 1988 notiert VERBUND an der Börse Wien, 51% des Aktienkapitals besitzt die Republik Österreich.


VERBUND steht heute für höchste Kompetenz und anerkanntes Know-how bei Erzeugung, Übertragung, Handel und Vertrieb von elektrischem Strom und ist Schrittmacher für saubere Energie und einer lebenswerten Zukunft für die nächsten Generationen.

Die VERBUND Hydro Power AG ist ein Tochterunternehmen von VERBUND mit Sitz in Wien mit den Kernaufgaben der Planung, Errichtung, Betriebsführung, Instandhaltung und des Managements der Wasserkraftwerke von VERBUND. Das Unternehmen betreibt Wasserkraftanlagen an Donau, Drau, Enns, Inn, Mur, Salzach und Salza sowie in den Gebirgsregionen Kaprun, Malta-Reisseck, Zillertal und in der Weststeiermark.

Der Wasserkraftpark in Österreich von VERBUND umfasst 106 Wasserkraftwerke, überwiegend im alleinigen Eigentum oder über Gemeinschaftskraftwerke mit Landesgesellschaften sowie über eine Beteiligung an der Ennskraftwerke AG. In Bayern betreiben die Tochterunternehmen VERBUND Innkraftwerke GmbH und Grenzkraftwerke GmbH insgesamt 21 Wasserkraftwerke am Inn und eines an der Donau.

WASSERKRAFTWERKE IN DER STEIERMARK

VERBUND-Wasserkraftwerke in Österreich und Bayern

VERBUND-WASSERKRAFTWERKE IN ÖSTERREICH UND BAYERN

	Anzahl	Leistung in MW	RAV in GWh
Laufkraftwerke ¹	94	4.060	22.619
(Pump-)Speicherkraftwerke ²	21	3.325	4.423
Summe ³	115	7.385	27.042

Beteiligungen ⁴	Anzahl	Leistung in MW	RAV in GWh
Laufkraftwerke	12	266	1.155

	Anzahl	Leistung in MW	RAV in GWh
Summe Wasserkraft	127	7.651	28.197

GWh Gigawattstunde (= 1 Mio. Kilowattstunden)

MW Megawatt (= 1.000 Kilowatt)

RAV Regelarbeitsvermögen (durchschnittliche Jahreserzeugung aus natürlichem Zufluss)

- 1 davon 11 Schwellkraftwerke mit einer Gesamtleistung von 641 MW
- 2 davon 5 Pumpspeicherwerke mit einer gesamten Pumpleistung von 1.616 MW
- 3 Mehrheitseigentum und Betriebsführung durch VERBUND Hydro Power AG (VHP)

33% Eigentum Kraftwerk Nußdorf in Wien, Betriebsführung VHP

50% Eigentum Kraftwerke Mittlere Salzach, Betriebsführung Salzburg AG 50% Eigentum Kraftwerke Gössendorf und Kalsdorf, Betriebsführung VHP

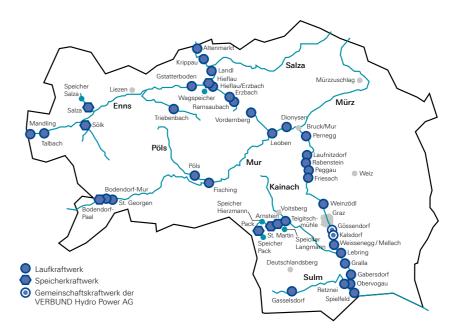
70% Eigentum und Betriebsführung durch VERBUND Innkraftwerke GmbH

100% Eigentum Österreichisch-Bayerische Kraftwerke AG und Donaukraftwerk Jochenstein AG, Betriebsführung Grenzkraftwerke GmbH

4 50% Beteiligung Ennskraftwerke AG

Kraftwerk Hieflau, Wehr Gstatterboden

Wasserkraftwerke in der Steiermark


Der Wasserkraftausbau zur Stromerzeugung in der Steiermark begann durch private Investoren Ende des 19. Jahrhunderts. An den Hauptflüssen Mur und Enns sowie deren Nebenflüssen entstanden zahlreiche Studien über das Wasserkraftpotential. Schon sehr frühzeitig wurden in der Nähe von Industrieund Ballungszentren die besonders wirtschaftlichen Standorte ausgebaut. 11 Kraftwerke der Werksgruppe Steiermark gingen schon in der ersten Hälfte des 20. Jahrhunderts an das Netz. Von einigen Industriekraftwerken an der Mur abgesehen, zählen heute alle größeren Kraftwerke zum Anlagenpark von Verbund.

Die Geographie der Steiermark ist durch den alpin geprägten Teil der Obersteiermark und das Hügel- und Riedelland der Ost- und Weststeiermark gekennzeichnet. Das Wasser aus den Niederen und Radstädter Tauern ist die größte Energiequelle für die Wasserkraftwerke von VERBUND in der Steiermark. Mur und Enns sowie ihre Zuflüsse liefern wertvollen Strom aus Wasserkraft. Das Wasser wird mehrfach genutzt: zuerst im Oberlauf in Speicherkraftwerken, dann im Unterlauf in Laufkraftwerken.

Die Enns wurde unter Verzicht auf den wildromantischen Gesäuse-Eingang mit Ausleitungskraftwerken ab Gstatterboden bis
zur oberösterreichischen Grenze vollständig
ausgebaut. Der steirische Hauptfluss Mur ist
zwischen seinem Eintritt in die Steiermark in
Predlitz und seinem Austritt in Radkersburg
ausgebaut. Insgesamt erzeugen in der Steiermark 42 VERBUND-Wasserkraftwerke jährlich
mehr als 2,7 Mrd. kWh Strom.

Die Werksgruppe Steiermark zeichnet sich nicht durch wenige größere Kraftwerke aus, sondern durch eine Vielzahl an kleineren bis mittleren Größen unterschiedlichen Typs (Tagesspeicher, Jahresspeicher, Laufkraftwerke). Sämtliche Anlagen und Kraftwerke sind nach der Umweltnorm ISO 14001 zertifiziert.

Die Kraftwerksanlagen sind – von wenigen Ausnahmen abgesehen – weitgehend automatisiert und werden von der Zentralwarte in Pernegg aus gesteuert und überwacht. Dieser zentral gelegene Ort wenige Kilometer südlich von Bruck an der Mur ist auch Standort der Werksgruppenleitung. WASSERKRAFTWERKE IN DER STEIERMARK

WASSERKRAFTWERKE IN DER STEIERMARK

Kraftwerksanlage	Тур	Flussgebiet	Jahr der IBN	EPL/MW	RAV/GWh
Mandling	L	Mandling, Enns	1985	6,1	23,5
Sölk	Т	Großsölkbach, Enns	1978	61,0	206,0
Salza	J	Salza, Enns	1949/2008	8,5	28,5
Hieflau	Т	Enns	1956/2009	63,0	388,0
Landl ¹	L	Enns	1967	25,0	135,5
Krippau ¹	L	Enns	1965	30,0	173,5
Altenmarkt ¹	L	Enns	1960	25,7	165,9
Triebenbach	L	Triebenbach, Enns	1995	9,9	41,7
Bodendorf-Paal	Т	Paalbach, Mur	1982	27,0	86,0
Bodendorf-Mur	L	Mur	1982	7,0	34,0
St. Georgen	L	Mur	1985	6,0	32,0
Fisching ¹	L	Mur	1994	21,9	74,0
Leoben	L	Mur	2005	9,9	50,0
Dionysen ¹	L	Mur	1949	16,2	85,9
Pernegg ¹	L	Mur	1927/2013	21,9	121,4
Laufnitzdorf	L	Mur	1931	18,0	121,0
Rabenstein	L	Mur	1987	13,9	64,5
Peggau	L	Mur	1908/1965	13,2	84,2
Friesach	L	Mur	1998	12,0	60,0
Weinzödl ¹	L	Mur	1982	15,6	63,0
Gössendorf ³	L	Mur	2012	18,8	88,6
Kalsdorf ³	L	Mur	2013	18,5	81,2
Mellach ²	L	Mur	1985	15,6	74,0
Lebring	L	Mur	1988	20,2	83,9
Gralla	L	Mur	1964	14,5	71,0
Gabersdorf	L	Mur	1974	14,5	68,0
Obervogau	L	Mur	1978	13,0	60,0
Spielfeld	L	Mur	1982	13,0	67,0
St. Martin	J	Teigitsch, Mur	1965	9,8	15,5
Arnstein	J	Teigitsch, Mur	1925	30,0	50,0
12 Kraftwerke kleiner als 5 MW				10,4	47,1
Summe Werksgruppe Steiermark			590,1	2.744,9	

- EPL Engpassleistung
- GWh Gigawattstunde (= 1 Mio. Kilowattstunden)
- IBN Inbetriebnahme
- MW Megawatt (= 1.000 Kilowatt)
 RAV Regelarbeitsvermögen aus
 natürlichem Zufluss
- J Jahrespumpspeicherkraftwerk
- Laufkraftwerk
- Tagesspeicherkraftwerk
- Werte inklusive Wehrturbine
 Werte inklusive Kühlwasserturbine
- Gemeinschaftskraftwerk der VERBUND Hydro Power AG und Energie Steiermark AG

Stausee und Sperre Großsölk

Kraftwerke im Ennstal

Kraftwerk Sölk

Krafthaus Stein

Die Sölktäler mit ihren großen Einzugsgebieten und hohen Jahreswasserfrachten machten den Bau eines Wasserkraftwerkes besonders wirtschaftlich. An einer geologisch und vom Gelände her günstigen Stelle wurde im Großsölktal ein Tagesspeicher errichtet, der durch eine 39 m hohe Gewölbemauer abgeschlossen ist. Das Stauziel des Speichers Großsölk mit einem Nutzinhalt von 1,5 Mio. m³ liegt auf Höhe 901,8 m. In den Speicher wird durch einen 3,3 km langen Beileitungs-Druckstollen das Wasser des Kleinsölkbaches und durch

einen rund 12 km langen Freispiegelstollen der Donnersbach und der Walchenbach eingeleitet. Die Triebwasserführung besteht aus dem 5,1 km langen Druckstollen, dem Wasserschloss und der 0,9 km langen eingeschütteten Druckrohrleitung.

Im Krafthaus Stein ist 1 Maschinensatz mit vertikaler Welle und einer Engpassleistung von 61.000 kW installiert. Der Maschinensatz besteht aus 1 Francis-Spiralturbine und 1 Synchrongenerator.

ALLGEMEINE DATEN

Kraftwerkstyp	Tagesspeicherkraftwerk
Inbetriebnahme	1978
Einzugsgebiet	380,3 km²
Engpassleistung	61,0 MW
Erzeugung im Regeljahr	206,0 GWh
Rohfallhöhe	231.8 m

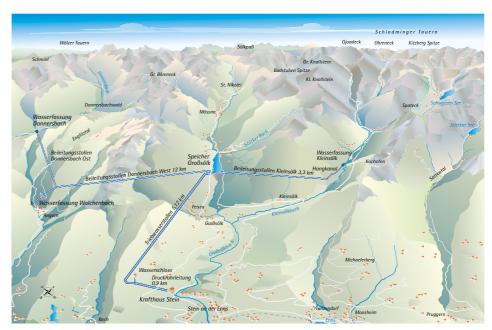
KRAFTWERKE IM ENNSTAL 9

TECHNISCHE DATEN

Speicher und Sperre Großsölk

Speichertyp	Tagesspeicher
Stauziel	901,8 m*
Absenkziel	882,0 m
Nutzinhalt	1,5 Mio. m³
Sperrentyp	Gewölbemauer
Mauerhöhe	39 m
Kronenlänge	128 m
Kronenbreite	3,0 m
Max. Basisbreite	8,0 m
Betonkubatur	17.000 m³

Triebwasserführung	Länge	Innen-Ø	$\mathbf{O}_{\!\scriptscriptstyleA}$
Triebwasserstollen	5.120 m	3,4 m	34 m³/s
Druckrohrleitung	935 m	(Kraftabstieg) 3,2 m	


Krafthaus Stein - Turbine

Anzahl	1
Bauart	Francis-Spiralturbine
Anordnung	vertikal
Nennleistung	66.000 kW
Nenndurchfluss	34 m³/s
Nenndrehzahl	375 U/min
Laufrad-Ø	2,5 m

Krafthaus Stein - Generator

Anzahl	1
Nennleistung	70.000 kVA
Nennspannung	10,5 kV

^{*} Alle Meter-Angaben bei Speicherkraftwerken sind betriebsinterne Höhenangaben. Diese weichen geringfügig von den Angaben "Meter über Adria" ab.

Kraftwerk Sölk, Übersichtspanorama

Stauziel
901,80 m

900,00 m

Absenkziel
882,00 m

Pegelbohrung

Injektionsschirm

Höhe in m

0 5 10 m

Sperre Großsölk, Querschnitt

WASSERKRAFTWERKE IN DER STEIERMARK KRAFTWERKE IM ENNSTAL

Sperre Salza

Kraftwerk Salza

Krafthaus Salza

Das Kraftwerk Salza in der Gemeinde St. Martin am Grimming ist ein Jahresspeicherkraftwerk und wurde von 1947 bis 1949 errichtet. Der rund 6 km lange Stausee Salza liegt harmonisch eingebettet in der engen Talschlucht der Mitterndorfer Salza, sein Nutzinhalt beträgt 10,5 Mio. m³. Als Abschlussbauwerk wurde eine 53 m hohe Staumauer mit einer Basisbreite von 12 m ausgeführt. Insgesamt wurden rund 23.000 m³ Beton in das Sperrenbauwerk eingebracht. Rund 0,5 km unterhalb

der Salza-Sperre wurde am rechten Ufer der Salza das Krafthaus errichtet. Im Krafthaus ist 1 Maschinensatz, bestehend aus 1 Francis-Spiralturbine und 1 direkt gekuppelten Drehstrom-Synchrongenerator eingebaut. Der erzeugte Strom wird in das regionale Verteilnetz der Steweag-Steg eingespeist. Von 2007 bis 2008 wurde die Sperre Salza nach knapp 60 Betriebsjahren umfassend revitalisiert und dem Stand der Technik angepasst.

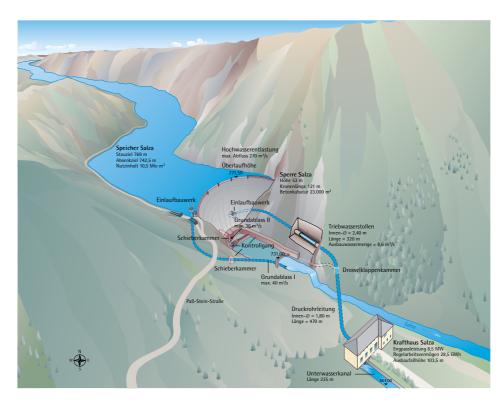
ALLGEMEINE DATEN

Kraftwerkstyp	Jahresspeicherkraftwerk
Inbetriebnahme	1949
Einzugsgebiet	145,3 km²
Engpassleistung	8,5 MW
Erzeugung im Regeljahr	28,5 GWh
Rohfallhöhe	107,0 m

TECHNISCHE DATEN

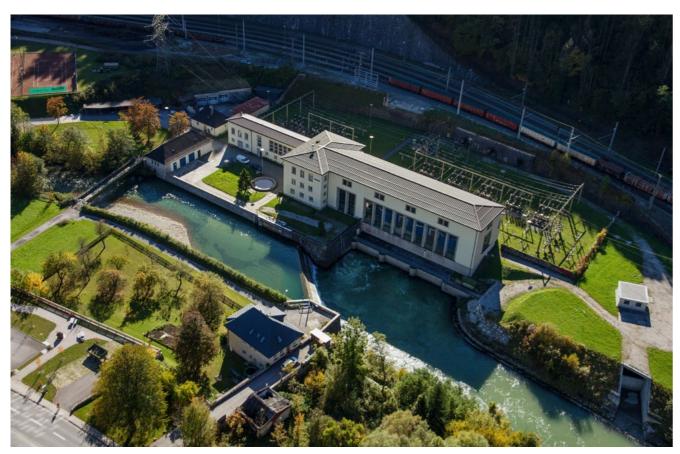
Speicher und Sperre Salza

operation and operate called	
Speichertyp	Jahresspeicher
Stauziel	771 m
Absenkziel	745 m
Nutzinhalt	10,5 Mio. m³
Sperrentyp	Gewölbemauer
Mauerhöhe	53 m
Kronenlänge	121 m
Kronenbreite	3 m
Max. Basisbreite	12 m
Betonkubatur	23.000 m³


Triebwasserführung	Länge	Innen-Ø	$\mathbf{O}_{\!\scriptscriptstyleA}$
Triebwasserstollen	320 m	2,4 m	9,6 m³/s
Druckrohrleitung	486 m	(Kraftabstieg) 1,8 m	

Krafthaus Salza - Turbine

Anzahl	1
Bauart	Francis-Spiralturbine
Anordnung	vertikal
Nennleistung	7.740 kW
Nenndurchfluss	9,6 m³/s
Nenndrehzahl	375 U/min
Laufrad-Ø	1,45 m


Krafthaus Salza - Generator

Anzahl	1
Nennleistung	10.000 kVA
Nennspannung	6,3 kV

Speicher und Krafthaus Salza, schematische Darstellung

2 WASSERKRAFTWERKE IN DER STEIERMARK KRAFTWERKE IM ENNSTAL

Kraftwerk Hieflau

Wehr Gstatterboden mit Fisch- und Organismenwanderhilfe

SCHWERPUNKT ÖKOLOGIE

Beim Kraftwerk Hieflau wurde ein breites Bündel an ökologischen Begleitmaßnahmen umgesetzt. In unmittelbarer Nachbarschaft zum Nationalpark Gesäuse wird seit dem Umbau viermal mehr Wasser in die Enns abgegeben, sodass sogar eine Wiederbesiedelung mit dem Huchen denkbar ist. Im Zuge der Erweiterungsmaßnahmen wurde das Wehr Gstatterboden mit einer modernen Fisch- und Organismenwanderhilfe ausgestattet.

Kraftwerk Hieflau

Nach langjährigen Vorbereitungen konnte 1953 mit dem Bau der Laufwerksstufe Hieflau und 1960 mit der Errichtung eines Speichers auf der Wag-Hochfläche begonnen werden. Die maximale Stauhöhe des Wehrs Gstatterboden war einerseits durch die Höhenlage des Wag-Plateaus gebunden, andererseits musste die am linken Ufer der Enns führende Trasse der ÖBB berücksichtigt werden. Nach der Wehranlage gelangt das Triebwasser über einen 0,5 km langen offenen Oberwasserkanal und die zwei 5,6 km langen Druckstollen in das 0,5 km lange offene Wasserschlossgerinne, das mit dem auf der Wag-Hochfläche errichteten Speicher Wag über Verschlussorgane und 2 Pumpen in Verbindung steht.

Das Stauziel des Speichers Wag, ein durch Dämme gebildetes Becken, liegt auf Höhe 565,5 m. Der Nutzinhalt beträgt 1,66 Mio. m³. Vom Wasserschloss und vom Speicher führen 3 je 260 m lange, teilweise eingeschüttete Stahldruckrohrleitungen zum Krafthaus am Fuße des Wag-Plateaus. Im Krafthaus Hieflau sind 3 Maschinensätze mit vertikaler Welle und einer Engpassleistung von zusammen 63.000 kW installiert. Jeder Maschinensatz besteht aus 1 Francis-Spiralturbine und 1 Drehstrom-Synchrongenerator. Das im gleichen Krafthaus angeordnete Kraftwerk Hieflau-Erzbach nutzt noch eine Gefällestufe des Erzbaches für die Energiegewinnung und Eigenbedarfsversorgung.

ALLGEMEINE DATEN

Kraftwerkstyp	Ausleitungskraftwerk mit Tagesspeicher
Inbetriebnahme	1956
Einzugsgebiet	2.790 km²
Engpassleistung	63,0 MW
Erzeugung im Regeljahr	388,0 GWh
Ausbaufallhöhe	83,5 m
Fischwanderhilfe	ja

TECHNISCHE DATEN

Krafthaus Hieflau - Turbinen

Anzahl	3
Bauart	Francis-Spiralturbine
Anordnung	vertikal
Nennleistung	22.000 kW
Nenndurchfluss	30 m³/s
Nenndrehzahl	250 U/min
Laufrad-Ø	2,29 m

Krafthaus Hieflau - Generatoren

Anzahl	3
Nennleistung	25.000 kVA
Nennspannung	10,5 kV

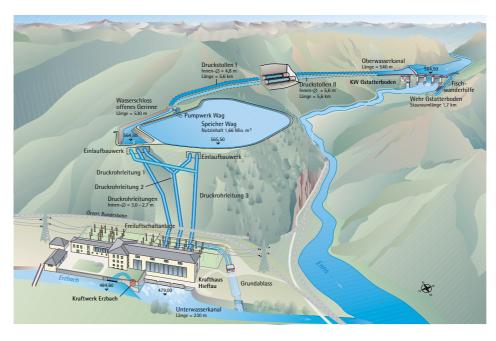
Kraftwerk Hieflau-Erzbach

1 Maschinensatz mit vertikaler Welle, bestehend aus 1 Kaplan-Turbine: Leistung 300 kW, Schluckfähigkeit 5 m³/s, und 1 Drehstromgenerator: Nennleistung 300 kVA, Nennspannung 400 V

Triebwasserführung

Wehr Gstatterboden	
3 Wehrfelder	lichte Weite je 12,0 m
Segmentverschlüsse mit aufgesetzten Klappen	Verschlusshöhe 9,7 m
Stauziel	564,5 m
Stauraumlänge	1,7 km
Oberwasserkanal und Druckstollen	Länge = 6,1 km
Wasserschloss, offenes Gerinne	Länge = 530 m

Speicher Wag


Künstliches, durch Dämme gebildetes Bed	cken
Stauziel	565,5 m
Nutzinhalt	1,66 Mio. m³
Kraftabstieg	3 Druckrohrleitungen
	Länge = 260 m
	Innen- $\emptyset = 3.0-2.7 \text{ m}$

Der Wag-Speicher nach der Revitalisierung 2012

EFFIZIENZSTEIGERUNG UND NEUES KLEINKRAFTWERK

Mit der Errichtung eines zweiten Triebwasserstollens kann im Krafthaus Hieflau seit 2009 die Kraft der Enns noch effizienter genutzt werden. Zudem wurde beim Wehr Gstatterboden ein gänzlich neues Wehrkraftwerk mit einer Leistung von 1.990 kW errichtet, mit dem auch bei der Wehranlage die Energie der Enns genutzt werden kann. 2011 wurde auch die Komplett-Sanierung des Wag-Speichers erfolgreich abgeschlossen.

Kraftwerk Hieflau, schematische Darstellung

Kraftwerk Arnstein

Kraftwerke in der Weststeiermark

Teigitsch-Kraftwerke

Druckrohrleitung Arnstein, 1924

KRAFTWERK MIT GESCHICHTE

Die Bauarbeiten bei Arnstein begannen 1922 mit dem Krafthaus, dann folgte der Druckstollen. Die 60 kV-Leitung von Arnstein nach Graz wurde erstmals unter Spannung gesetzt. Am 28.3.1925 ging die Anlage offiziell in Betrieb. Im Jahr 1921 wurde der Beschluss zum Ausbau der Wasserkräfte an der Teigitsch in der Weststeiermark gefasst. Die 4 Anlagen der Kraftwerksgruppe "Teigitsch" nutzen das in den Speichern Pack, Hierzmann und Langmann gespeicherte Energiepotential optimal aus.

Kraftwerk Arnstein

In den Jahren 1922 bis 1925 wurde die erste Ausbaustufe, das Jahresspeicherkraftwerk Arnstein mit dem Tagesspeicher Langmann, errichtet. Das Stauziel des Speichers Langmann mit einem Nutzinhalt von 0,32 Mio. m³ liegt auf Höhe 630,5 m. Der Speicher wird durch eine 26 m hohe Gewichtsmauer abgeschlossen. Die Triebwasserführung besteht aus dem 5,25 km langen Druckstollen, dem Wasserschloss und den beiden 690 m langen gepanzerten Druckrohrleitungen. Im 1931 erweiterten Kraftwerk sind 3 Maschinensätze mit horizontaler Welle und einer Engpassleistung von zusammen 30.000 kW installiert. Jeder der 3 Maschinensätze besteht aus 1 Francis-Spiralturbine und 1 Synchrongenerator.

TEIGITSCH-KRAFTWERKE – ALLGEMEINE DATEN

Kraftwerk	Pack	St. Martin	Arnstein	Teigitschmühle
Kraftwerkstyp	Tagesspeicher	Jahresspeicher	Jahresspeicher	Laufkraftwerk
Inbetriebnahme	1931	1965	1925	1926
Einzugsgebiet	63 km²	162 km²	175 km²	170 km²
Engpassleistung	800 kW	9.800 kW	30.000 kW	1.200 kW
Erzeugung im Regeljahr	1,8 GWh	15,5 GWh	50,0 GWh	2,0 GWh
Rohfallhöhe	28,5 m	77,5 m	246,8 m	11,6 m

KRAFTWERKE IN DER WESTSTEIERMARK

Speicher und Sperren

Kraftwerk	Pack	St. Martin	Arnstein	Teigitschmühle
Speicher/Sperre	Pack	Hierzmann	Langmann	
Speichertyp	Tagesspeicher	Jahresspeicher	Tagesspeicher	
Stauziel	867,7 m	708,0 m	630,5 m	
Absenkziel	849,0 m	675,0 m	621,0 m	
Nutzinhalt	5,4 Mio. m ³	7,1 Mio. m³	0,32 Mio. m ³	
Sperrentyp	Gewichtsmauer	Gewölbemauer	Gewichtsmauer	
Mauerhöhe	33,2 m	58,6 m	26,0 m	
Kronenlänge	183 m	172 m	85 m	
Kronenbreite	4,0 m	3,0 m	3,0 m	
Max. Basisbreite	24,0 m	17,0 m	15,0 m	
Betonkubatur	49.000 m³	43.000 m³	12.000 m³	

TECHNISCHE DATEN

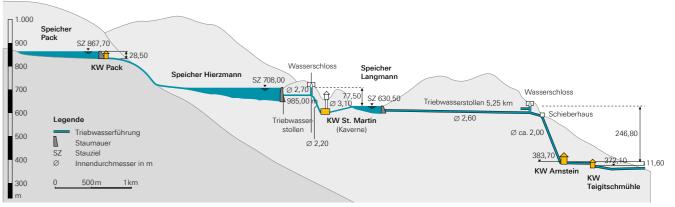
Kraftabstieg

Turbinen				
Anzahl	1	1	3	1
Bauart	Francis-Turbine	Kaplan-Turbine	Francis-Turbine	Francis-Doppelturbine
Anordnung	vertikal	horizontal	horizontal	horizontal
Nennleistung	745 kW	11.000 kW	11.000 kW	1.435 kW
Nenndurchfluss	3,3 m³/s	16,5 m³/s	5,5 m³/s	15,0 m³/s
Nenndrehzahl	600 U/min	610 U/min	750 U/min	250 U/min
Laufrad-Ø	0,805 m	1,49 m	1,20 m	1,2 bzw. 1,4 m
Generatoren				
Anzahl	1	1	3	1
Nennleistung	900 kVA	12.500 kVA	13.000 kVA	1.900 kVA
Nennspannung	5,5 kV	6,3 kV	5,5 kV	5,5 kV
Triebwasserführung				
horizontale	Stahlrohr durch	Druckstollen:	Druckstollen:	Oberwasserkanal:
Triebwasserführung	die Sperre Pack:	Länge = 985 m	Länge = 5.250 m	Länge = 1.000 m

Innen- \emptyset = 2,7 m

Druckschacht:

Länge = 121 m


Innen- \emptyset = 2,2 m

Innen- \emptyset = 2,6 m

Länge = 690 m

Innen- \emptyset = 1,8 m

2 Druckrohrleitungen:

Teigitsch-Kraftwerke, Übersichtslängenschnitt

Länge = 20,7 m

Innen- \emptyset = 1,3 m

WASSERKRAFTWERKE IN DER STEIERMARK KRAFTWERKE IN DER WESTSTEIERMARK 17

Sperre Hierzmann

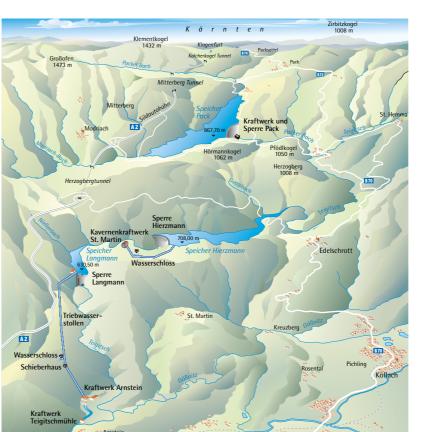
Kraftwerk Pack

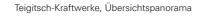
Kraftwerk St. Martin

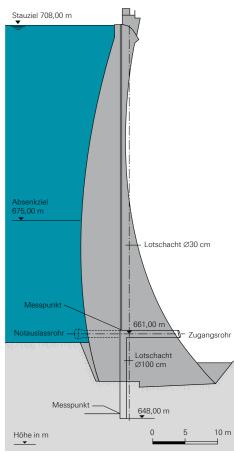
Kraftwerk Teigitschmühle

Kraftwerk Pack

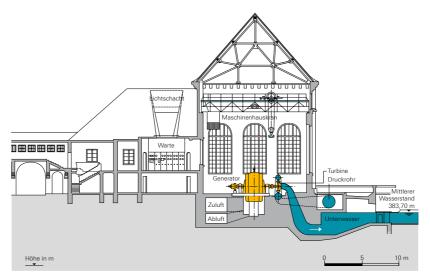
Von 1929 bis 1931 erfolgte die Erweiterung der bestehenden Anlagen der Teigitsch-Gruppe durch die Errichtung des Jahresspeichers Pack und eines Kleinkraftwerkes. Das Stauziel des Speichers Pack mit einem Nutzinhalt von 5,4 Mio. m³ liegt auf Höhe 867,7 m. Der Speicher wird durch eine 33,2 m hohe Gewichtsmauer abgeschlossen. Das Kraftwerk Pack ist ein Tagesspeicher mit 800 kW Engpassleistung. Im Krafthaus ist ein vertikaler Maschinensatz bestehend aus 1 Francis-Spiralturbine und 1 Synchrongenerator installiert.

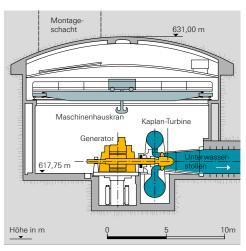

Kavernenkraftwerk St. Martin


Der Jahresspeicher Hierzmann wurde von 1947 bis 1950 errichtet und brachte eine wesentliche Verbesserung der Speicherkapazität der Teigitsch-Gruppe. Das Stauziel des Speichers mit einem Nutzinhalt von 7,1 Mio. $\rm m^3$ liegt auf Höhe 708,0 m. Der Speicher wird durch eine 58,6 m hohe


Gewölbemauer abgeschlossen, sie ist die höchste ihrer Art in der Steiermark.
Die Triebwasserführung besteht aus dem 985 m langen Druckstollen, dem Wasserschloss und dem 121 m langen gepanzerten Druckschacht. Das Kavernenkraftwerk St. Martin mit einer Engpassleistung von 9.800 kW wurde 1965 in Betrieb genommen. In der Kraftwerkskaverne befindet sich 1 Maschinensatz mit horizontaler Welle, bestehend aus Kaplan-Turbine und Asynchrongenerator.

Kraftwerk Teigitschmühle


Das 1926 in Betrieb genommene Kraftwerk
Teigitschmühle ist ein Laufkraftwerk mit
1.200 kW Engpassleistung. Dem Kraftwerk
wird über einen Oberwasserkanal das im
Kraftwerk Arnstein abgearbeitete Wasser zugeführt. Im Krafthaus ist ein Maschinensatz
bestehend aus 1 Francis-Doppelturbine und
1 Synchrongenerator eingebaut.



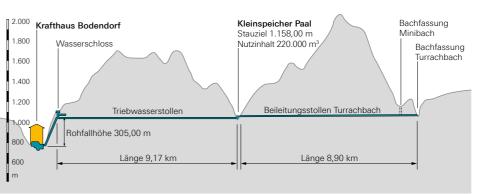
Sperre Hierzmann, Querschnitt

Kraftwerk Arnstein, Querschnitt

Kraftwerkskaverne St. Martin, Querschnitt

Kraftwerk Bodendorf, Wehranlage und Krafthaus

Murkraftwerke westlich von Bruck


Kraftwerk Bodendorf

Die energiewirtschaftliche Nutzung der Wasserfracht des Turrach- und Paalbaches kombiniert mit einer Murstufe, stellte eine besondere Herausforderung für die Kraftwerksplaner dar. Aufgrund der günstigen geographischen Lage ergab sich die Möglichkeit, in einem gemeinsamen Krafthaus in Bodendorf sowohl eine Mitteldruck- als auch eine Niederdruckanlage zu situieren. Angesichts der Größe und der Besonderheit der Kraftwerksanlage ist der bauliche Eingriff in die Landschaft äußerst bescheiden ausgefallen. Landwirtschaftlich genutzte Flächen wurden kaum beansprucht. Das Kraftwerk wurde mit der "Geramb-Rose" für umweltschonendes Bauen ausgezeichnet.

ALLGEMEINE DATEN

Kraftwerk	Bodendorf-Paal (Stufe Paal)	Bodendorf-Mur (Murstufe)
Kraftwerkstyp	Tagesspeicherkraftwerk	Laufkraftwerk
Inbetriebnahme	1982	1982
Einzugsgebiet	198,5 km²	1.359 km²
Engpassleistung	27,0 MW	7,0 MW
Erzeugung im Regeljahr	86,0 GWh	34,0 GWh
Ausbaufallhöhe	296,0 m	16,7 m
Fischwanderhilfe	nein	geplant bis 2021

MURKRAFTWERKE WESTLICH VON BRUCK

Stufe Paal, Übersichtslängenschnitt

Kraftwerk Bodendorf, Maschinenhalle

Sperre Paal

Stufe Paal - Mitteldruckanlage

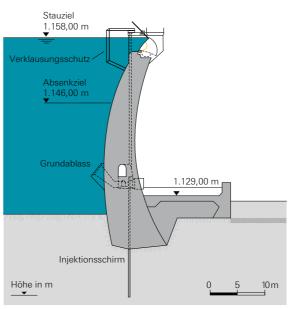
Für die Mitteldruckanlage wurde im Paalbachtal ein Tagesspeicher errichtet, der durch eine 37,5 m hohe Gewölbemauer abgeschlossen ist. Das Stauziel des Speichers Paal mit einem Nutzinhalt von 0,22 Mio. m³ liegt auf 1.158 m Seehöhe. In den Speicher wird durch einen 8,9 km langen Freispiegel-Stollen das Wasser des Turrach- und Minibachs eingeleitet.

Die Triebwasserführung besteht aus dem 9,17 km langen Druckstollen, dem Wasserschloss und der 1 km langen gepanzerten Druckrohrleitung. Im Krafthaus Bodendorf ist 1 Maschinensatz mit vertikaler Welle und einer Engpassleistung von 27.000 kW installiert. Der Maschinensatz besteht aus 1 Francis-Spiralturbine und 1 Drehstrom-Synchrongenerator.

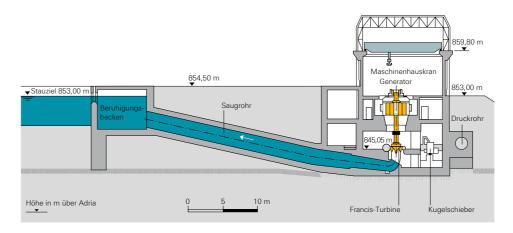
STUFE PAAL - TECHNISCHE DATEN

Speicher und Sperre Paal

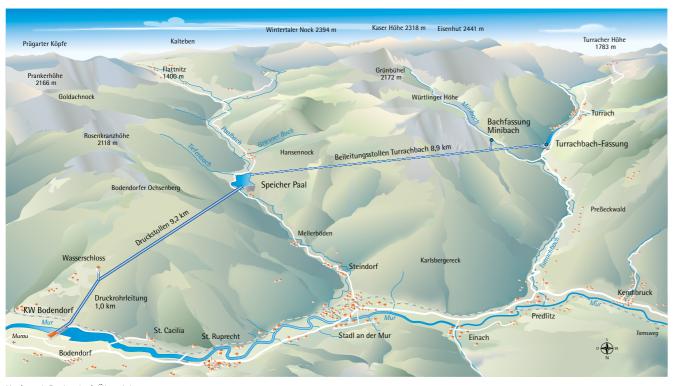
Speichertyp	Tagesspeicher
Stauziel	1.158 m
Absenkziel	1.146 m
Nutzinhalt	0,22 Mio. m³
Sperrentyp	Gewölbemauer
Mauerhöhe	37,5 m
Kronenlänge	128 m
Kronenbreite	3,0 m
Max. Basisbreite	9,0 m
Betonkubatur	20.000 m³



Mitteldruckanlage - Turbine


Anzahl	1
Bauart	Francis-Spiralturbine
Anordnung	vertikal
Nennleistung	27.260 kW
Nenndurchfluss	10 m³/s
Nenndrehzahl	750 U/min
Laufrad-Ø	1,35 m

Mitteldruckanlage - Generator


······orai noma nago conorato.	
Anzahl	1
Nennleistung	31.000 kVA
Nennspannung	10,5 kV

Sperre Paal, Querschnitt

Stufe Paal, Querschnitt durch die Mitteldruckanlage

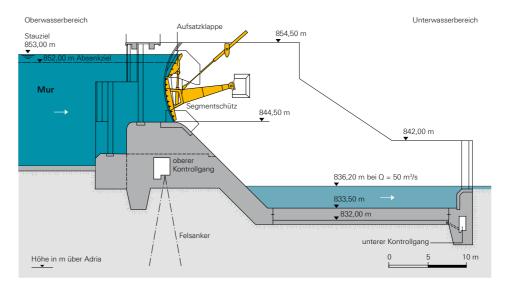
Kraftwerk Bodendorf, Übersichtspanorama

Murstufe - Niederdruckanlage

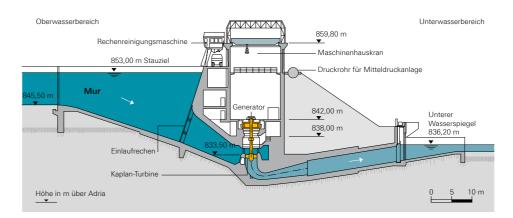
Für die Niederdruckanlage wurde die Mur beim Krafthaus Bodendorf um 11 m aufgestaut und im Unterwasserbereich auf einer Länge von 1.200 m bis zu 4 m eingetieft. Im Krafthaus Bodendorf nutzt ein Maschinensatz mit vertikaler Welle und einer Engpassleistung von 7.000 kW das Wasser der Mur zur Stromerzeugung. Der Maschinensatz besteht aus 1 Kaplan-Spiralturbine und 1 Drehstrom-Synchrongenerator. Jedes der beiden Wehrfelder erhielt als Betriebsverschluss ein Segmentschütz mit aufgesetzter Klappe.

MURSTUFE - TECHNISCHE DATEN

Niederdruckanlage – Turbine


Anzahl	1
Bauart	Kaplan-Spiralturbine
Anordnung	vertikal
Nennleistung	7.415 kW
Nenndurchfluss	50 m³/s
Nenndrehzahl	214,3 U/min
Laufrad-Ø	2,7 m

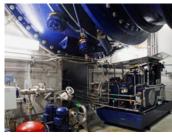
Niederdruckanlage - Generator


Anzahl	1
Nennleistung	8.500 kVA
Nennspannung	3,5 kV

Niederdruckanlage - Wehranlage

2 Wehrfelder	lichte Weite je 12,0 m
Segment mit aufgesetzter Klappe	Verschlusshöhe 8,7 m

Murstufe, Querschnitt durch die Wehranlage



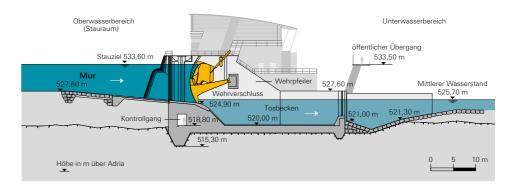
Murstufe, Querschnitt durch die Niederdruckanlage

StadtKraftWerk Leoben mit Fischwanderhilfe

Kraftwerk Leoben

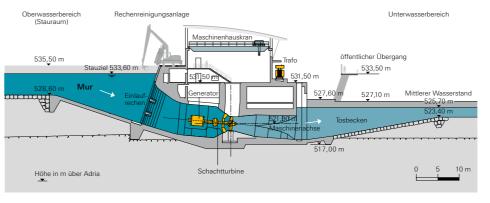
Turbinenraum mit Reglereinrichtungen

Das 1905 in Betrieb genommene "Krempl-Kraftwerk" – eine traditionelle Wasserkraftanlage im Stadtgebiet von Leoben – wurde von 2003 bis 2005 durch ein modernes leistungsstärkeres, aber auch umweltfreundlicheres Laufkraftwerk ersetzt. An der Stelle der ehemaligen Wehranlage des alten Ausleitungskraftwerkes wurde ein Wasserkraftwerk mit Krafthaus und Wehranlage errichtet. Im linksufrig angeordneten, modern gestalteten Krafthaus sind 2 Maschinensätze, bestehend aus je 1 um 5 Grad geneigten Kaplan-Schachtturbine und 1 direkt gekoppelten Drehstrom-Synchrongenerator, eingebaut. Die 2-feldrige Wehranlage wurde in bewehrter Betonkonstruktion ausgeführt. Als Wehrverschlüsse sind je 1 Wehrfeld und je ein 14,5 m breites Stahlsegmente mit aufgesetzter Stauklappe und einer Gesamthöhe von 8,9 m montiert.


ALLGEMEINE DATEN

Kraftwerkstyp	Laufkraftwerk
Inbetriebnahme	2006
Einzugsgebiet	4.584 km²
Engpassleistung	9,9 MW
Erzeugung im Regeljahr	50 GWh
Ausbaufallhöhe	7,9 m
Ausbauwassermenge	150 m³/s
Fischwanderhilfe	ja

TECHNISCHE DATEN


Stauraumlänge

Turbinen	
Anzahl	2
Bauart	Kaplan-Schachtturbine
Anordnung	horizontal (5° geneigt)
Nennleistung	je 5.580 kW
Nenndurchfluss	je 75 m³/s
Nenndrehzahl	145 U/min
Laufrad-Ø	3,35 m
Generatoren Anzahl	2
Nennleistung	je 6.000 kVA
Nennspannung	6,0 kV
Wehranlage	
2 Wehrfelder	lichte Weite je 14,5 m
Segment mit aufgesetzter Klappe	Verschlusshöhe 8,9 m
Stauziel	533,6 m ü. A.

Kraftwerk Leoben, Querschnitt durch ein Wehrfeld

2,2 km

Kraftwerk Leoben, Querschnitt durch das Krafthaus

Kraftwerk Dionysen, verwachsenes Krafthaus Fisching

Kraftwerk St. Georgen, Wehranlage Fisching

Weitere Kraftwerke westlich von Bruck

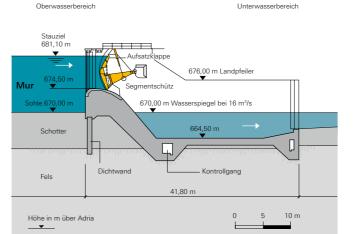
UMWELTTECHNISCHE MEISTER-LEISTUNG

Das Kraftwerk Fisching wurde den naturräumlichen Bedingungen perfekt angepasst und ist heute ein Schulbeispiel für Natur aus zweiter Hand. Das Triebwassergerinne ist ein technisches Meisterwerk. das höchsten ökologischen Ansprüchen gerecht wird - Schotterinseln und Seichtwasserzonen sind für viele Tierarten zum idealen Lebensraum geworden. Die Fischaufstiegshilfe besteht aus einer großen Zahl von kleinen Tümpeln, die wie ein natürlicher Wildbach aussehen und den Fischen die Überwindung der Wehranlage ermöglichen. Das Krafthaus selbst wurde in einen Hang hineingebaut und ist mit der Landschaft mittlerweile vollkommen verwachsen.

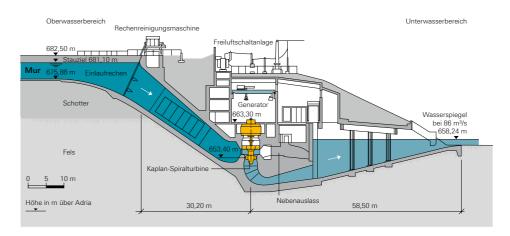
Kraftwerk St. Georgen

Das Murkraftwerk St. Georgen ist das Unterlieger-Laufkraftwerk der beiden Anlagen in Bodendorf und liegt westlich der Ortschaft St. Georgen ob Murau. In der Anlage dreht sich 1 Kaplan-Spiralturbine mit 5 Laufradflügeln und einem Durchmesser von 2,7 m. Bei einer Schluckfähigkeit von 50 m³/s besitzt sie eine Nennleistung von 6.364 kW. Die 2-feldrige Wehranlage staut das Wasser der Mur. Jedes Wehrfeld ist 11,5 m breit und weist eine Verschlusshöhe von 8,7 m auf.

Kraftwerk Fisching


Das Kraftwerk Fisching ist ein kombiniertes Lauf-Ausleitungskraftwerk an der Mur. Die 3 Wehrfelder stauen die Mur 11 m hoch auf. Das rund 1,1 km lange Triebwassergerinne schneidet eine Murschleife ab und führt das Triebwasser dem Krafthaus zu. Im überschütteten Krafthaus sind 2 verschieden große Maschinensätze mit vertikaler Welle und einer Engpassleistung von zusammen 21.900 kW installiert. Der große Maschinensatz besteht aus 1 Kaplan-Spiralturbine und 1 Drehstrom-Synchrongenerator und der kleinere Maschinensatz aus 1 S-Turbine und ebenfalls 1 Drehstrom-Synchrongenerator. Zur Nutzung der abzugebenden Restwassermenge wurde neben der Wehranlage 1 Kaplan-Kegelrad-Rohrturbine mit horizontaler Welle eingebaut.

Kraftwerk Dionysen


Das Murkraftwerk Dionysen ist ein Ausleitungs-Laufkraftwerk und liegt im Murtal zwischen Bruck und Niklasdorf. Es wurde von 1942 bis 1945 und nach dem Zweiten Weltkrieg von 1948 bis 1949 erbaut. Das Kraftwerk besteht aus der Wehranlage Mötschlach, dem Oberwasserkanal und dem Krafthaus Dionysen. Die Anlage ist mit 2 Kaplan-Turbinen (Nenndurchfluss 55 m³/s, Leistung 8.840 kW) sowie 1 Wehrturbine ausgestattet.

ALLGEMEINE DATEN

Kraftwerk	St. Georgen	Fisching	Dionysen
Kraftwerkstyp	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk
Inbetriebnahme	1985	1994	1949
Engpassleistung	6.000 kW	21.900 kW	16.200 kW
Erzeugung im Regeljahr	32,0 GWh	74,0 GWh	85,9 GWh
Turbinenanzahl	1	3	3
Ausbaufallhöhe	14,4 m	22,5 m	16,6 m
Ausbauwassermenge	50 m³/s	101,8 m³/s	110 m³/s
Stauraumlänge	0,6 km	4,5 km	1,6 km
Fischwanderhilfe	geplant ab 2021	ja	ja

Kraftwerk Fisching, Querschnitt durch ein Wehrfeld

Kraftwerk Fisching, Querchnitt durch das Krafthaus

Krafthaus Pernegg mit Schauturbine

Murkraftwerke südlich von Bruck

Kraftwerk Pernegg

Maschinenhalle

Die Kraftwerksanlage

Das Kraftwerk Pernegg, erbaut von 1925 bis 1927, ist ein kombiniertes Lauf- und Ausleitungskraftwerk an der Mur. An einer geologisch und vom Gelände her günstigen Stelle wurde das Wehr Zlatten errichtet und die Mur 11,5 m hoch aufgestaut. Die 3 Wehrfelder wurden mit Doppelhakenschützen ausgestattet. Das Triebwasser fließt in dem rund 2,3 km langen Ausleitungskanal zum Krafthaus Pernegg. Im Krafthaus sind 3 Maschinensätze mit vertikaler Welle und einer Engpassleistung von zusammen 21.900 kW installiert. Jeder Maschinensatz besteht aus 1 Kaplan-Turbine und 1 Drehstrom-Synchrongenerator. Zur Nutzung der abzugebenden Restwassermenge wurde neben der Wehranlage 1 Kaplan-Kegelrad-Turbine eingebaut.

Umfangreiche Modernisierung

Als das Murkraftwerk Pernegg 1927 in Betrieb ging, war es das leistungsstärkste Laufkraftwerk Österreichs. Mehr als 80 Jahre lang haben sich die 3 Maschinensätze des Kraftwerkes als Dauerläufer bewährt. Im Jahr 2010 startete in Pernegg eine der größten Kraftwerksmodernisierungen Österreichs. Während der 3-jährigen Umbauzeit erhielt das denkmalgeschützte Krafthaus ein gänzlich neues Innenleben mit moderner Leittechnik und Steuerungselektronik. Anstelle der 3 alten Francis-Spiralturbinen wurden leistungsoptimierte Kaplan-Spiralturbinen eingebaut, die gemeinsam mit den neuen Generatoren trotz verringerter Wassermenge deutlich mehr Strom erzeugen. Das Kraftwerk Pernegg wurde zum stärksten Kraftwerk an der Mur und ist heute Sitz der Zentralwarte und Werksgruppe Steiermark.

MURKRAFTWERKE SÜDLICH VON BRUCK

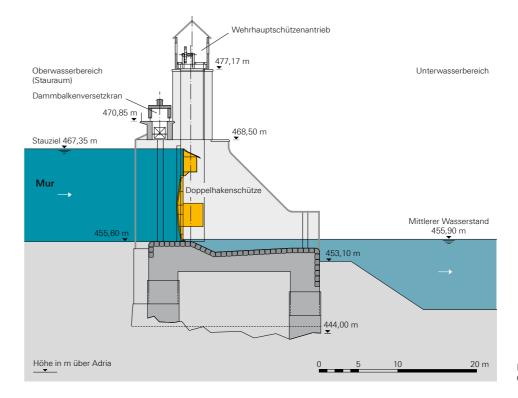
ALLGEMEINE DATEN

Kraftwerkstyp	Laufkraftwerk
Inbetriebnahme	1927/2013
Einzugsgebiet	6.250 km²
Engpassleistung	21.900 kW
Erzeugung im Regeljahr	121,4 GWh
Ausbaufallhöhe	16,87 m
Ausbauwassermenge	135 m³/s
Fischwanderhilfe	ja

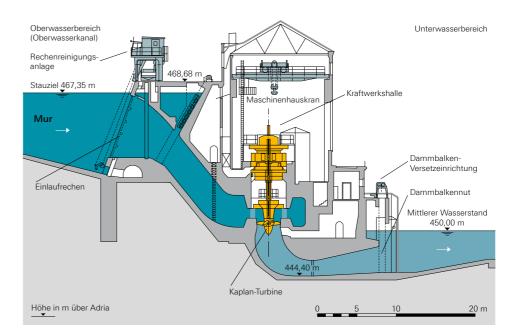
TECHNISCHE DATEN

Turbinen	
Anzahl	
Bauart	Kaplan-Spiralturbine
Anordnung	vertika
Nennleistung	8.100 kW
Nenndurchfluss	56 m³/s
Nenndrehzahl	200 U/mir
Laufrad-Ø	3,0 n
Generatoren	
Anzahl	
Nennleistung	9.300 kVA
Nennspannung	6,3 k\
Wehrturbine	
Bauart	Kaplan-Kegelradturbine
Engpassleistung	1.200 kW
Anordnung	vertika
Ausleitungskanal/Wehranlage	
Ausleitungskanal	Länge = 2,3 km
3 Wehrfelder	lichte Weite je 15,0 m
Doppelhakenschütze	Verschlusshöhe 11,7 m
Stauziel	467,35 m ü. A
Stauraumlänge	5,1 kn

Kraftwerk Pernegg mit Wehr Zlatten, schematische Darstellung


Naturnahe Inseln

Neben den technischen Neuerungen wurden auch umfangreiche ökologische Maßnahmen rund um das Kraftwerk realisiert. So wurden im Stauraum als Strukturierungsmaßnahmen 7 naturnahe Inseln mit rd. 2.500 m² Fläche aufgeschüttet und die Uferbereiche des Oberwasserkanals mit Steinschüttungen versehen. Weiters wurde die Restwasserdotation der Mur im Bereich der Wehranlage erhöht und an die natürlichen Gegebenheiten angepasst.


Schauturbine Pernegg: Dauerläufer im Ruhestand

In einem neuen Ausstellungsgebäude auf dem Kraftwerksgelände Pernegg wurde einer der 3 historischen Maschinensätze als Schauturbine originalgetreu aufgebaut. Gemeinsam mit vielen historischen Bildern über die Kraftwerkserrichtung bietet die neue Schauturbine Einblicke in die Geschichte der Stromerzeugung aus Wasserkraft.

Kraftwerk Pernegg, Querschnitt durch das Wehr Zlatten

Kraftwerk Pernegg, Querschnitt durch das Krafthaus

Kraftwerk Peggau

Weitere Kraftwerke südlich von Bruck

Kraftwerk Laufnitzdorf

Das Laufkraftwerk Laufnitzdorf liefert seit 1931 zuverlässig sauberen Strom aus Wasserkraft. Die 2 vertikal eingebauten Kaplan-Maschinensätze haben eine Nennleistung von 8.250 kW und bestehen aus je 1 Drehstrom-Synchrongenerator.

Kraftwerk Rabenstein

Das Laufkraftwerk Rabenstein, erbaut von 1984 bis 1987, besteht aus 2 horizontal eingebauten Kaplan-Rohrturbinen mit einer Nennleistung von 6.525 kW und je 1 Drehstromsynchron-Generator.

Kraftwerk Peggau

Das Kraftwerk Peggau ist ein Laufkraftwerk und wurde von 1906 bis 1908 erbaut und von 1963 bis 1965 umgebaut. Die ursprüngliche maschinentechnische Ausstattung wurde durch moderne Anlagen ausgetauscht. Das Ensemble Peggau-Deutschfeistritz besteht aus dem Wehr Adriach mit dem Einlaufbauwerk für den Betriebskanal, dem 3,2 km langen Betriebswasserkanal mit dem etwa 1,07 km langen Tunnel sowie dem alten und neuen Krafthaus. Das historische Maschinenhaus mit reichlicher Jugendstilornamentik

ist denkmalgeschützt. Südlich des alten Maschinenhauses ist das neue Krafthaus situiert. Die Anlage besteht aus 2 vertikal montierten Kaplan-Turbinen mit einer Schluckfähigkeit von 55 m³/s und mit einer Nennleistung von 6.560 kW.

Kraftwerk Friesach

Das Kraftwerk Friesach ist ein Laufkraftwerk. Es wurde von 1995 bis 1998 erbaut. Herzstücke der Anlage sind die 2 horizontal eingebauten Kaplan-Rohrturbinen mit 10 Grad Neigung und einem Laufrad-Durchmesser von 3,85 m sowie einem Synchrongenerator mit einer Leistung von 8.500 kVA. Die Anlage staut die Mur mit 3 Wehrfeldern auf.

Kraftwerk Weinzödl

Das Laufkraftwerk Weinzödl nördlich von Graz wurde von 1979 bis 1982 erbaut. In der Maschinenhalle befinden sich 2 horizontal eingebaute, doppelt regulierte Straflo-Turbinensätze. Die Anlage wird durch das Mühlkanal-Kleinkraftwerk, Nennleistung 215 kW, ergänzt. 2013 wurde mit dem Umbau der Straflo-Turbinensätze auf konventionelle Rohr-Turbinensätze begonnen.

ALLGEMEINE DATEN

Kraftwerk	Laufnitzdorf	Rabenstein	Peggau	Friesach	Weinzödl
Kraftwerkstyp	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk
Inbetriebnahme	1931	1987	1908/1965	1998	1982
Engpassleistung	18.000 kW	13.900 kW	13.200 kW	12.000 kW	15.600 kW
Erzeugung im Regeljahr	121,0 GWh	64,5 GWh	84,2 GWh	60,0 GWh	63,0 GWh
Turbinenanzahl	2	2	2	2	3
Ausbaufallhöhe	18,4 m	8,4 m	13,5 m	7,3 m	9,8 m
Ausbauwassermenge	120 m³/s	180 m³/s	110 m³/s	200 m³/s	180 m³/s
Stauraumlänge	3,2 km	4,0 km	0,9 km	2,3 km	1,8 km
Fischwanderhilfe	ja	ja	Umsetzung bis 2015	ja	Umsetzung bis 2015

Kraftwerk Rabenstein, Kraftwerk Laufnitzdorf

Kraftwerk Friesach, Kraftwerk Weinzödl

Kraftwerk Gabersdorf

Murkraftwerke südlich von Graz

Kraftwerk Gabersdorf

Maschinenhalle

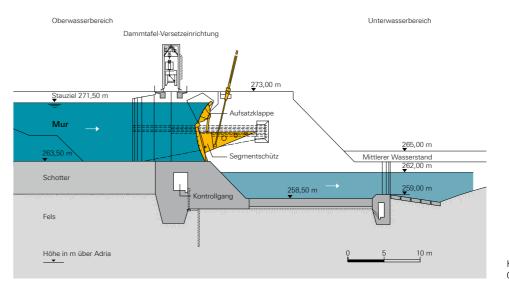
Das Murkraftwerk Gabersdorf ist ein Laufkraftwerk und wurde von 1972 bis 1974 in Trockenbauweise, das heißt in einer umspundeten Baugrube, errichtet. Der Rückstauraum ist rund 2,5 km lang und reicht bis in den Unterwasserbereich des Oberlieger-Kraftwerkes Gralla. Um die erforderliche Gesamtfallhöhe zu erreichen, wurde die Mur oberhalb des Hauptbauwerkes um 8,2 m aufgestaut und die Flusssohle unterhalb bis zu 3 m eingetieft. Im Krafthaus sind 2 unter 13 Grad geneigte

Maschinensätze mit einer Engpassleistung von zusammen 14.500 kW installiert. Jeder Maschinensatz besteht aus 1 Kaplan-Rohrturbine und 1 direkt gekuppelten Drehstrom-Synchrongenerator. Die Wehranlage besteht aus 3 Wehrfeldern mit regulierbaren Wehrverschlüssen. Jedes Wehrfeld ist im Normalbetrieb durch ein Segmentschütz mit aufgesetzter Klappe verschlossen, bei Hochwasser kann es zur Gänze geöffnet werden.

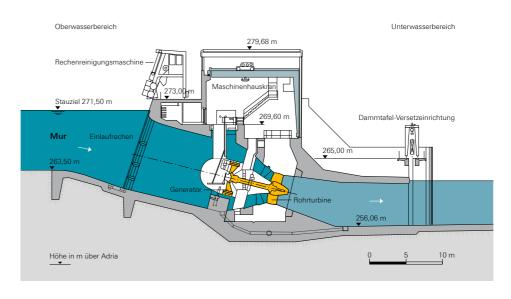
ALLGEMEINE DATEN

Kraftwerkstyp	Laufkraftwerk
Inbetriebnahme	1974
Einzugsgebiet	8.204 km²
Engpassleistung	14.500 kW
Erzeugung im Regeljahr	68,0 GWh
Ausbaufallhöhe	8,0 m
Ausbauwassermenge	220 m³/s
Fischwanderhilfe	ja

MURKRAFTWERKE SÜDLICH VON GRAZ


lichte Weite je 15,0 m

TECHNISCHE DATEN


Turbinen	
Anzahl	2
Bauart	Kaplan-Rohrturbine
Anordnung	horizontal (13° geneigt)
Nennleistung	8.956 kW
Nenndurchfluss	115 m³/s
Nenndrehzahl	107,1 U/min
Laufrad-Ø	4,15 m
Generatoren	
Anzahl	2
Nennleistung	10.000 kVA
Nennspannung	6,3 kV

Wehranlage
3 Wehrfelder

Segmentschütze mit Aufsatzklappen Verschlusshöhe 8,2 m Stauziel 271,5 m ü. A. Stauraumlänge 2,5 km

Kraftwerk Gabersdorf. Querschnitt durch ein Wehrfeld

Kraftwerk Gabersdorf, Querschnitt durch das Krafthaus 36 WASSERKRAFTWERKE IN DER STEIERMARK

Kraftwerk Gössendorf

Weitere Kraftwerke südlich von Graz

Fischotterinseln beim Kraftwerk Gössendorf

NATURRAUM MUR

Die zentrale ökologische Herausforderung bei der Errichtung der neuen Kraftwerke Gössendorf und Kalsdorf war die Erhaltung und Wiederherstellung des Naturraums Mur. Mit der Wiederherstellung von verloren gegangenen Altarmen entstanden im Zuge des Kraftwerksbaus neue Naherholungsareale mit einem vielfältigen Freizeitangebot. Zudem konnte der Hochwasserschutz für die Anrainergemeinden bedeutend verbessert werden.

Kraftwerk Gössendorf

Das Laufkraftwerk Gössendorf staut die Mur 11,2 m hoch auf und hat einen maximalen Durchfluss von 200 m³/s. Im Krafthaus sind 2 Kaplan-Rohrturbinen mit einer Engpassleistung von 18.750 kW installiert, die pro Jahr 88.600 GWh Strom erzeugen.

Kraftwerk Kalsdorf

Das jüngste Murkraftwerk Kalsdorf ist ein Laufkraftwerk und staut die Mur 11,2 m auf. Der maximale Durchfluss beträgt 200 m³/s. Im Krafthaus sind 2 Kaplan-Rohrturbinen mit einer Leistung von 18.510 kW installiert, die pro Jahr 81,2 GWh Strom erzeugen.

Kraftwerk Mellach

Ein weiteres Laufkraftwerk ist Mellach, das gemeinsam mit den thermischen Anlagen im Kraftwerkspark Mellach situiert ist. Die Anlage beinhaltet 2 Rohrturbinen mit einer Nennleistung von je 8.550 kW. Das Wasser des Kühlwasserkanals wird mit einer S-Turbine (Nennleistung 582 kW) ebenfalls energetisch genutzt.

Kraftwerk Lebring

Lebring, erbaut von 1985 bis 1988, beinhaltet 2 doppelt regulierbare, nahezu horizon-

tal eingebaute Rohrturbinen mit 5 Grad Neigung. Sie weisen mit einem Laufraddurchmesser von je 3,85 m eine Engpassleistung von 20.200 kW auf.

Kraftwerk Gralla

Die technisch-maschinelle Ausstattung des Kraftwerks Gralla umfasst 2 vertikal montierte Maschinensätze, die aus je 1 Kaplan-Turbine und 1 Drehstrom-Synchrongenerator bestehen. Nach mehr als 40 Betriebsjahren wurde die gesamte Anlage von 2009 bis 2012 umfassend modernisiert.

Kraftwerk Obervogau

Im Laufkraftwerk Obervogau erzeugen 2 Kaplan-Rohrturbinen mit einer Nennleistung von je 6.500 kW elektrischen Strom. Die Anlage verfügt über 2 Drehstrom-Synchrongeneratoren und eine 3-feldrige Wehranlage.

Kraftwerk Spielfeld

Im Kraftwerk Spielfeld, dem letzten Glied der Kraftwerkskette Mur, befinden sich 2 horizontal eingebaute Maschinensätze, die aus je 1 Kaplan-Rohrturbine und 1 direkt gekuppelten Drehstrom-Synchrongenerator bestehen. MURKRAFTWERKE SÜDLICH VON GRAZ

ALLGEMEINE DATEN

Kraftwerk	Gössendorf	Kalsdorf	Mellach	Lebring	Gralla	Obervogau	Spielfeld
Kraftwerkstyp	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk	Laufkraftwerk
Inbetriebnahme	2012	2013	1985	1988	1964	1978	1982
Engpassleistung	18.750 kW	18.510 kW	15.600 kW	20.200 kW	14.500 kW	13.000 kW	13.000 kW
Erzeugung im Regeljahr	88,6 GWh	81,2 GWh	74,0 GWh	83,9 GWh	71,0 GWh	60,0 GWh	67,0 GWh
Turbinenanzahl	2	2	3	2	2	2	2
Ausbaufallhöhe	11,2 m	11,2 m	9,9 m	10,2 m	8,7 m	6,5 m	6,9 m
Ausbauwassermenge	200 m³/s	200 m³/s	180 m³/s	200 m³/s	200 m³/s	220 m³/s	240 m³/s
Stauraumlänge	4,0 km	3,9 km	3,4 km	4,9 km	2,1 km	3,0 km	3,8 km
Fischwanderhilfe	ja	ja	ja	Umsetzung bis 2015	ja	ja	ja

Kraftwerk Gralla, Kraftwerke Retznei (links), Obervogau, Kraftwerk Spielfeld

Kontakt

VERBUND Hydro Power AG Europaplatz 2, A-1150 Wien Telefon. +43 (0) 50313-0 E-Mail. hydropower@verbund.com Web. www.verbund.com

Werksgruppe Steiermark E-Werkstraße 2, A-8132 Pernegg Telefon. +43 (0) 50313-37011

Impressum

Medieninhaber und Herausgeber

VERBUND Hydro Power AG,

A-1150 Wien

Redaktion Andreas Kuchler, Ira Stanic-Maruna, Simion Hurghis

Bildredaktion Johannes Wiedl

Fotos VERBUND, ARGE Gössendorf-Kalsdorf, MOORSFILM – GYROCAM, Paul Ott, Valentin Wille

Layout & Produktion Since Today

Panoramagrafiken Netzteil Druck Wallig

Auflage 2013

